
EXAM P QUESTIONS OF THE WEEK
S. Broverman, 2006

Week of April 10/06

An insurance claims administrator verifies claims for various loss amounts.
For a loss claim of amount , the amount of time spent by the administrator to verify the claim isB

uniformly distributed between 0 and  hours. The amount of each claim received by the"  B

administrator is uniformly distributed between 1 and 2. Find the average amount of time that an
administrator spends on a randomly arriving claim.

The solution can be found below.



Week of April 10/06 - Solution
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(iii) The double expectation rule,   .IÒ] Ó œ IÒIÒ] l\Ó Ó
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If we apply the second approach for method (i), we must split the double integral into
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The first order of integration for method (i) was clearly the more efficient one.



(ii) This method is equivalent to the second approach in method (i), because we find   from0 ÐCÑ]

the relationship    .  The two-dimensional region of probability for the joint0 ÐCÑ œ 0ÐBß CÑ .B] '
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method (i).

(iii)  According to the double expectation rule, for any two random variables   and  , weY [
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