EXAM C QUESTIONS OF THE WEEK

S. Broverman, 2006

Week of August 14/06

The random variable X has an exponential distribution with mean θ . The loss random variable Y is defined to be a mixture of X with mixing weight q, and 0 with mixing weight 1 - q, where 0 < q < 1. A random sample of n losses is observed: Y_1, \ldots, Y_n . Suppose that n_0 of the losses are 0 and the remaining losses are > 0. Find the maximum likelihood estimators of q and θ in terms of n, n_0 and Y_1, \ldots, Y_n .

Solution can be found below.

Week of August 14/06 - Solution

Y has a mixed distribution with a probability mass at Y = 0 which has probability P(Y = 0) = q and density function $f_Y(y) = (1 - q) \cdot \frac{1}{\theta} e^{-y/\theta}$ for y > 0.

The likelihood function will be the product of a factor of q for each loss that is 0, and a factor of $(1-q) \cdot \frac{1}{\theta} e^{-y/\theta}$ for each loss that is > 0. The logliklihood will be a sum of factors of ln q for each loss that is 0, and $ln(1-q) - ln \theta - \frac{y}{\theta}$ for each loss that is > 0.

There are $m = n - n_0$ losses that are > 0. Let us denote them $z_1, ..., z_m$ (there are the *m* Y values that are > 0). The loglikelihood function is

$$\ln L = n_0 \ln q + m \ln(1-q) - m \ln \theta - \frac{\Sigma z_i}{\theta}.$$

The mle's of q and θ are found by solving the two equations $\frac{\partial}{\partial q} \ln L = 0$ and $\frac{\partial}{\partial \theta} \ln L = 0$. Because of the additive separation of q and θ , it can be seen that the mle of q is $\hat{q} = \frac{n_0}{n_0+m} = \frac{n_0}{n}$ (the usual binomial parameter mle) and $\hat{\theta} = \frac{\Sigma z_i}{m} = \frac{\Sigma z_i}{n-n_0}$. Since the z'_i 's are the non-zero Y's, it is true that $\Sigma z_i = \Sigma Y_i$, so that $\hat{\theta} = \frac{\Sigma Y_i}{n-n_0}$.