EXAM M QUESTIONS OF THE WEEK

S. Broverman, 2005

Question 3 - Week of August 8

You are given the following for every integer age x:

- (i) $\ddot{a}_x = 10$ and (ii) $A_x = \frac{11}{21}$
- (a) Calculate $_{10}q_{50}$.
- (b) Assuming UDD over each year of age, calculate $\,\overline{a}_{\,20:\overline{10}|}$.

The solution can be found below.

Question 3 Solution

(a) Using the relationship $A_x=1-d\ddot{a}_x$ we get $\frac{11}{21}=1-10d$, from which it follows that $d=\frac{1}{21}$. Then $v=1-d=\frac{20}{21}=\frac{1}{1+i}$ and $i=\frac{1}{20}=.05$.

Then using the relationship $\ddot{a}_x = 1 + vp_x\ddot{a}_{x+1}$ we get $10 = 1 + (\frac{20}{21})(p_x)(10)$ from which it follows that $p_x = .945$. This is valid for any integer x.

Then, $_{10}p_{50}=p_{50}\cdot p_{51}\cdots p_{59}=(.945)(.945)\cdots (.945)=(.945)^{10}=.5680$, and $_{10}q_{50} = 1 - _{10}p_{50} = .4320$.

(b) We use the relationship $\overline{a}_x = \overline{a}_{x:\overline{n}|} + v^n {}_n p_x \overline{a}_{x+n}$:

$$\overline{a}_{\,20} = \overline{a}_{\,20:\overline{10}|} + v^{10}_{\,\,10} p_{20} \, \overline{a}_{\,30} \ \, .$$

From UDD we have $\overline{A}_x = \frac{i}{\delta} A_x = \frac{.05}{ln \cdot 1.05} \cdot \frac{11}{21} = .5368$ for all x,

and then $\overline{a}_x = \frac{1-\overline{A}_x}{\delta} = 9.494$ for all x. Therefore $9.494 = \overline{a}_{20:\overline{10}|} + v^{10}_{10}p_x \cdot (9.494) = \overline{a}_{20:\overline{10}|} + \frac{.5680}{(1.05)^{10}} \cdot (9.494)$ and then $\overline{a}_{20:\overline{10}|}=6.2$.

Note that since $v=\frac{20}{21}$ and $p_x=.945$, we have $vp_x=.9$, so that $v^{10}_{10}p_x = (.9)^{10} = .348678$.