EXAM C QUESTION OF THE WEEK

S. Broverman, 2008

Week of April 7/08

The Cox proportional hazard model is applied to a two-variate model.

Both variates are 0-1 variates (Z_1 is 0 or 1, and Z_2 is 0 or 1).

You are given the following data set of death and right-censoring (+) times of 16 individuals, with 4 in each classification:

$Z_1\;,\;Z_2$	Times
0 , 0	$1 \ , \ 1 \ , \ 2^{+} \ , \ 3$
1 , 0	$2\;,\;3\;,\;4^+\;,\;5$
0 , 1	$1\;,\;3\;,\;3\;,\;3^+$
1 , 1	$3\;,\;4\;,\;4^+\;,\;6$

The partial maximum likelihood estimates of eta_1 and eta_2 are $\ \widehat{eta}_1=-1.05$ and $\ \widehat{eta}_2=-.60$.

Using the Nelson-Aalen type estimate for $H_0(t)$, find the estimated probability of survival to at least time 3 of someone with covariate values $Z_1 = 0$ and $Z_2 = 1$.

The solution can be found below.

Week of April 7/08 - Solution

The estimated survival probability is $[\widehat{S}_0(3)]^{e^{\widehat{eta}_2}}$.

From the given data, we get

$$\widehat{H}_0(3) = \tfrac{3}{4 + 4e^{\widehat{\beta}_1} + 4e^{\widehat{\beta}_2} + 4e^{\widehat{\beta}_1 + \widehat{\beta}_2}} + \tfrac{1}{2 + 4e^{\widehat{\beta}_1} + 3e^{\widehat{\beta}_2} + 4e^{\widehat{\beta}_1 + \widehat{\beta}_2}} + \tfrac{5}{1 + 3e^{\widehat{\beta}_1} + 3e^{\widehat{\beta}_2} + 4e^{\widehat{\beta}_1 + \widehat{\beta}_2}}$$

Also,
$$e^{\widehat{\beta}_1}=e^{-1.05}=.3499$$
 , and $e^{\widehat{\beta}_2}=e^{-60}=.5488$, so that

$$\widehat{H}_0(3)=1.65 \text{ , and } \widehat{S}_0(3)=e^{-\widehat{H}_0(3)}=.192 \text{ , and } [\widehat{S}_0(3)]^{e^{\widehat{\beta}_2}}=(.192)^{.5488}=.40 \; .$$