EXAM C QUESTIONS OF THE WEEK

S. Broverman, 2007

Week of August 13/07

A compound distribution S has frequency N and severity X, both of which are members of the (a,b,0) class. You are given the following:

$$E(N) = 2.4$$
 , $Var(N) = 1.92$, $E(S) = 14.4$, $Var(S) = 126.72$

Find P(S=0).

The solution can be found below.

Week of August 13/07 - Solution

The probability generating functions of S, N and X satisfy the relationship $P_S(t) = P_N(P_X(t))$. Then, $P(S=0) = P_S(0) = P_N(P_X(0))$.

An (a, b, 0) distribution must be either Poisson, Negative Binomial or Binomial. Binomial is the only one of the three with expected value greater than variance. Therefore, N is binomial, say with parameters q and m.

$$E[N]=mq=2.4$$
 and $Var[N]=mq(1-q)=1.92$, and it follows that $q=.2$ and $m=12$. The probability generating function of N is $P_N(z)=[1+q(z-1)]^m=[1+(.2)(z-1)]^{12}$.

The mean of S is $\ E[S]=E[N]\cdot E[X]$, so that $\ 14.4=2.4E[X]$ and we get $\ E[X]=6.0$.

The variance of
$$S$$
 is $Var[S]=E[N]\cdot Var[X]+Var[N]\cdot (E[X])^2$, so that $126.72=2.4Var[X]+1.92(6.0)^2$, and we get $Var[X]=24$.

Since X is an (a,b,0) distribution, it is either Poisson, Negative Binomial or Binomial. The Negative Binomial distribution is the only one of the three whose mean is less than its variance. Therefore X has a negative binomial distribution, say with parameters r and β . $E[X]=r\beta=6$ and $Var[X]=r\beta(1+\beta)=24$, and it follows that $\beta=3$ and r=2. The probability generating function of X is $P_X(t)=\frac{1}{[1-\beta(t-1)]^r}=\frac{1}{[1-3(t-1)]^2}$.

Then,
$$P_X(0)=\frac{1}{[1-3(-1)]^2}=\frac{1}{16}$$
, and
$$P(S=0)=P_S(0)=P_N(P_X(0))=P_N(\frac{1}{16})=[1+(.2)(\frac{1}{16}-1)]^{12}=.0828\;.$$