EXAM C QUESTIONS OF THE WEEK

S. Broverman, 2007

Week of December 31/07

Random variable Y is defined as the mixture of three uniform random variables: Uniform on [0, 1], Uniform on [0, 2], Uniform on [0, 4].

The median of Y is $\frac{20}{21}$ and the mean of Y is 1.2 .

Find the variance of Y.

The solution can be found below.

Week of December 31/07 - Solution

We will denote the mixing weights as a_1 for the uniform [0, 1]and a_2 for the uniform [0, 2]. Then the mixing weight for uniform [0, 4]is $a_3 = 1 - a_1 - a_2$.

The cdf's of the mixing components are $F_1(x) = x$ for $0 \le x \le 1$ for uniform [0, 1], $F_2(x) = \frac{x}{2}$ for $0 \le x \le 2$ for uniform [0, 2], and $F_3(x) = \frac{x}{4}$ for $0 \le x \le 4$ for uniform [0, 4]. The cdf for Y is $F_Y(x) = a_1F_1(x) + a_2F_2(x) + (1 - a_1 - a_2)F_3(x)$ $= a_1x + a_2 \times \frac{x}{2} + (1 - a_1 - a_2) \times \frac{x}{4} = (3a_1 + a_2 + 1) \times \frac{x}{4}$. Then $F_Y(\frac{20}{21}) = (3a_1 + a_2 + 1) \times \frac{5}{21} = .5$. This equation can be written as $15a_1 + 5a_2 = 5.5$.

The means of the mixing components are

.5 for uniform [0,1], 1 for uniform [0,2], 2 for uniform [0,4]. The mean of Y is $a_1 \times .5 + a_2 \times 1 + (1 - a_1 - a_2) \times 2 = 2 - 1.5a_1 - a_2 = 1.2$. This equation can be written as $1.5a_1 + a_2 = .8$.

Solving the equations for a_1 and a_2 results in $a_1 = .2$ and $a_2 = .5$, so $1 - a_1 - a_2 = .3$ (these are the mixing weights).

The 2nd moment of a uniform distribution on [a, b] is $\frac{b^3 - a^3}{3(b-a)}$, so the 2nd moments of the mixing distributions are $\frac{1}{3}$ for uniform [0, 1]. $\frac{4}{3}$ for uniform [0, 2], $\frac{16}{3}$ for uniform [0, 4]. The 2nd moment of Y is the mixture of these 2nd moments, so $E[Y^2] = .2 \times \frac{1}{3} + .5 \times \frac{4}{3} + .3 \times \frac{16}{3} = \frac{7}{3}$.

The variance of Y is $E[Y^2] - (E[Y])^2 = \frac{7}{3} - (1.2)^2 = \frac{67}{75}$.