EXAM C QUESTIONS OF THE WEEK

S. Broverman, 2007

Week of March 12/07

The following random sample of size 2 is taken from a Pareto distribution:

18.7 , 51.5

An iterative maximum likelihood estimation method is applied to estimate α and θ .

A starting estimate of θ is $\theta_1 = 100$. α is estimated using maximum likelihood estimation.

The value of α found is denoted α_1 and it used to find the mle of θ , denoted θ_2 .

The value of θ_2 is used to find the next mle of α denoted α_2 .

Find α_2 .

The solution can be found below.

Week of March 12/07 - Solution

The log of the density of the Pareto distribution is $ln f(x) = ln \alpha + \alpha ln \theta - (\alpha + 1) ln(x + \theta)$ and

$$\frac{\partial}{\partial \theta} \ln f(x) = \frac{\alpha}{\theta} - \frac{\alpha + 1}{x + \theta}$$
, $\frac{\partial}{\partial \alpha} \ln f(x) = \frac{1}{\alpha} + \ln \theta - \ln(x + \theta)$.

Given $\theta_1 = 100$, with 2 sample values, to find the mle of α , we solve $\frac{\partial}{\partial \alpha} \ln L = \frac{2}{\alpha} + 2 \ln \theta - \Sigma \ln(x_i + \theta) = \frac{2}{\alpha} + 2 \ln 100 - (\ln 118.7 + \ln 151.5) = 0.$ Solving for α results in $\alpha_1 = 3.41$.

Now, with $\alpha_1 = 3.41$, to find the mle of θ , we solve

$$\frac{\partial}{\partial \theta} \ln L = \frac{2\alpha}{\theta} - \sum_{x_i + \theta} \frac{\alpha + 1}{x_i + \theta} = \frac{2(3.41)}{\theta} - \frac{4.41}{18.7 + \theta} - \frac{4.41}{51.5 + \theta} = 0$$

Now, with $\alpha_1 = 5.41$, to find the first $\beta_1 = 3.41$ and $\alpha_1 = 3.41$ and $\alpha_2 = 3.41$ and $\alpha_3 = 3.41$ and $\alpha_4 = 3.41$ a

The numerator is $6568.001 + 169.182\theta - 2\theta^2$.

Setting this equal to 0 results in two solutions for θ , 113.5 and -28.9.

We ignore the negative root and use $\theta_2 = 113.5$ as the new estimate for θ .

The next estimate of α is found from

 $\frac{2}{g} + 2 \ln 113.5 - (\ln 132.2 + \ln 165.0) = 0.$

Solving for α results in $\alpha_2 = 3.80$.