EXAM C QUESTIONS OF THE WEEK

S. Broverman, 2007

Week of March 19/07

You are given the following:

- The random variable X has the density function $f(x) = \frac{1}{\lambda} e^{-x/\lambda}, 0 < x < \infty, \lambda > 0.$

- λ is estimated by an estimator $\tilde{\lambda}$ based on a large random sample of size *n*.

- p is the proportion of the observations in the sample that are greater than 1.

- The probability that X is greater than 1 is estimated by the estimator $e^{-1/\tilde{\lambda}}$.

(a) Determine the estimator for the probability that X is greater than 1 if $\tilde{\lambda}$ is the maximum likelihood estimator.

A) \overline{X} B) $e^{-1/\overline{X}}$ C) p D) -ln p E) $-\frac{1}{ln p}$ (b) Determine the approximate variance of the estimator for the probability that X is greater than 1 if $\tilde{\lambda}$ is \overline{X} .

A) $\frac{\lambda^2}{n}$ B) $\frac{1}{n}e^{-1/\lambda}$ C) $\frac{1}{n\lambda}e^{-1/\lambda}$ D) $\frac{1}{n\lambda^2}e^{-2/\lambda}$ E) $\frac{1}{n}e^{-1/\lambda}(1-e^{-1/\lambda})$

The solution can be found below.

Week of March 19/07 - Solution

(a) X has an exponential distribution. The mle is the same as the moment estimator of λ , which is \overline{X} . The estimate of P[X > 1] is the estimate of $e^{-1/\lambda}$, which is found using the mle of λ . The estimate of P[X > 1] is of $e^{-1/\overline{\lambda}} = e^{-1/\overline{X}}$. Answer: B (b) The variance of a function of the mle of parameter θ is $Var[g(\widehat{\theta})] = [g'(\theta)]^2 \cdot Var[\widehat{\theta}]$. In this case, $g(\lambda) = P[X > 1] = e^{-1/\lambda} \rightarrow g'(\lambda) = e^{-1/\lambda} \cdot \frac{1}{\lambda^2}$. Since the mle of λ in an exponential distribution is $\widehat{\lambda} = \overline{X}$, $Var[\widehat{\lambda}] = Var[\overline{X}] = \frac{Var[X]}{n} = \frac{\lambda^2}{n}$. The variance of the estimate of P[X > 1] is $(e^{-1/\lambda} \cdot \frac{1}{\lambda^2})^2 \cdot \frac{\lambda^2}{n} = \frac{1}{n\lambda^2}e^{-2/\lambda}$. Answer: D