EXAM C QUESTION OF THE WEEK

S. Broverman, 2008

Week of March 24/08

The method of moments is applied to estimate the mixing weights and Poisson parameters for a mixture of two Poisson distributions. The estimates of the first three moments of the mixed distribution are:

- estimated first moment is 3
- estimated second moment is 14
- estimated third moment is 83

Determine the estimated mixing weights and Poisson means.

The solution can be found below.

Week of March 24/08 - Solution

The second moment of a Poisson distribution with mean λ is $\lambda^2 + \lambda$.

The third moment can be found from the moment generating function of the Poisson distribution, $M(t) = e^{\lambda(e^t-1)}$, so that $\frac{d}{dt^3} M(t)\Big|_{t=0} = e^{2(\lambda+1)(e^t-1)} \cdot [\lambda^3 e^{3t} + 3\lambda^2 e^{2t} + \lambda e^t] = \lambda^3 + 3\lambda^2 + \lambda.$

The mixing weights will be denoted a and 1 - a for Poisson with means λ_1 and λ_2 respectively.

We get the following three equations from the given information:

 $a\lambda_{1} + (1-a)\lambda_{2} = 3$ $a(\lambda_{1}^{2} + \lambda_{1}) + (1-a)(\lambda_{2}^{2} + \lambda_{2}) = 14$ $a[\lambda_{1}^{3} + 3\lambda_{1}^{2} + \lambda_{1}] + (1-a)[\lambda_{2}^{3} + 3\lambda_{2}^{2} + \lambda_{2}] = 83$

From the first equation we get $a = \frac{\lambda_2 - 3}{\lambda_2 - \lambda_1}$. Applying this to equation 2 results in the equation $\frac{\lambda_2 - 3}{\lambda_2 - \lambda_1} \cdot (\lambda_1^2 + \lambda_1) + \frac{3 - \lambda_1}{\lambda_2 - \lambda_1} \cdot (\lambda_2^2 + \lambda_2) = 14$. This equation can be written in the form $\frac{3[\lambda_2^2 + \lambda_2 - (\lambda_1^2 + \lambda_1)] - \lambda_1(\lambda_2^2 + \lambda_2) + \lambda_2(\lambda_1^2 + \lambda_1)}{\lambda_2 - \lambda_1} = 14$. This reduces to $\frac{3[(\lambda_2 - \lambda_1)^2 + \lambda_2 - \lambda_1] - \lambda_1\lambda_2[\lambda_2 - \lambda_1]}{\lambda_2 - \lambda_1} = 14$, and after cancellation, the equation becomes $3[(\lambda_2 + \lambda_1) + 1] - \lambda_1\lambda_2 = 14$.

Applying $a = \frac{\lambda_2 - 3}{\lambda_2 - \lambda_1}$ to equation 3 results in the equation $\frac{\lambda_2 - 3}{\lambda_2 - \lambda_1} \cdot [\lambda_1^3 + 3\lambda_1^2 + \lambda_1] + \frac{3 - \lambda_1}{\lambda_2 - \lambda_1} \cdot [\lambda_2^3 + 3\lambda_2^2 + \lambda_2] = 83$.

$$\begin{split} & \operatorname{Regrouping terms in this equation, we get}_{\begin{array}{c} \frac{3[\lambda_2^3 - \lambda_1^3 + 3\lambda_2^2 - 3\lambda_1^2 + \lambda_2 - \lambda_1]}{\lambda_2 - \lambda_1} - \frac{\lambda_1 \lambda_2 [\lambda_2^2 + 3\lambda_2 - \lambda_1^2 - 3\lambda_1]}{\lambda_2 - \lambda_1} = 83 \ . \end{split} \\ & \begin{array}{c} \text{This reduces to} \\ \frac{3[(\lambda_2 - \lambda_1)(\lambda_2^2 + \lambda_1 \lambda_2 + \lambda_1^2) + 3(\lambda_2 - \lambda_1)(\lambda_2 + \lambda_1) + \lambda_2 - \lambda_1]}{\lambda_2 - \lambda_1} - \frac{\lambda_1 \lambda_2 [(\lambda_2 - \lambda_1)(\lambda_2 + \lambda_1) + 3(\lambda_2 - \lambda_1)]}{\lambda_2 - \lambda_1} = 83 \ . \end{split} \end{split}$$

After cancellation, this becomes

$$\begin{split} &3[(\lambda_{2}^{2}+\lambda_{1}\lambda_{2}+\lambda_{1}^{2})+3(\lambda_{2}+\lambda_{1})+1]-\lambda_{1}\lambda_{2}[(\lambda_{2}+\lambda_{1})+3]=83\,,\\ &\text{which can be written as}\\ &3[(\lambda_{2}^{2}+2\lambda_{1}\lambda_{2}+\lambda_{1}^{2})-\lambda_{1}\lambda_{2}+3(\lambda_{2}+\lambda_{1})+1]-\lambda_{1}\lambda_{2}[(\lambda_{2}+\lambda_{1})+3]=83\,,\\ &\text{or equivalently, }3[(\lambda_{2}+\lambda_{1})^{2}-\lambda_{1}\lambda_{2}+3(\lambda_{2}+\lambda_{1})+1]-\lambda_{1}\lambda_{2}[(\lambda_{2}+\lambda_{1})+3]=83\,. \end{split}$$

Continued on next page

From $3[(\lambda_2 + \lambda_1) + 1] - \lambda_1\lambda_2 = 14$, we get $\lambda_1\lambda_2 = 3(\lambda_2 + \lambda_1) - 11$, and substituting this in the last equation, and denoting $\lambda_1 + \lambda_2$ by x results in the equation $3(x^2 + 11 - 3x + 3x + 1) - (3x - 11)(x + 3) = 83$, from which we get x = 7.

Therefore, $\lambda_1 + \lambda_2 = 7$ and $\lambda_1 \lambda_2 = 3(7) - 11 = 10$. Then, $\lambda_1(7 - \lambda_1) = 10$, and solving the quadratic results in $\lambda_1 = 2$ or 5. These are the values of λ_1 and λ_2 . Let us assume that $\lambda_1 = 2$ and $\lambda_2 = 5$. Then 2a + 5(1 - a) = 3 from which we get $a = \frac{2}{3}$ and $1 - a = \frac{1}{3}$. If we had assume that $\lambda_1 = 5$ and $\lambda_2 = 2$, then $a = \frac{1}{3}$ and $1 - a = \frac{2}{3}$.