EXAM C QUESTIONS OF THE WEEK

S. Broverman, 2005

Week of December 19

A study of the time until failure, X, of an electronic device is based on observing 20 of the devices. One failure and one right-censoring is observed at each of the integer time points $1,2,\ldots,10$. The probability $P[3 < X < 6 \,|\, X \le 9]$ is to be estimated. Find the absolute difference between the Kaplan-Meier product limit estimate and the Nelson-Aalen estimate.

Solution can be found below.

Week of December 19 - Solution

$$P[3 < X < 6 \mid X \le 9] = \frac{P[3 < X < 6]}{P[X \le 9]}$$

Since the observed failure times are all integers, the estimate of P[3 < X < 6] is the same as

the estimate of $P[3 < X \le 5\,] = S(3) - S(5)$. Therefore, we wish to estimate $\frac{S(3) - S(5)}{1 - S(9)}$.

The numbers at risk and the numbers of failures at each failure time are:

y_i :	1	2	3	4	5	6	7	8	9	10
r_i :	20	18	16	14	12	10	8	6	4	2
s_i :	1	1	1	1	1	1	1	1	1	1

The product limit estimate of S(3) is $(1-\frac{1}{20})(1-\frac{1}{18})(1-\frac{1}{16})=.841146$. The product limit estimate of S(5) is $(1-\frac{1}{20})(1-\frac{1}{18})(1-\frac{1}{16})(1-\frac{1}{14})(1-\frac{1}{12})=.715975$.

The product limit estimate of S(9) is

The product limit estimate of
$$S(9)$$
 is $(1 - \frac{1}{20})(1 - \frac{1}{18})(1 - \frac{1}{16})(1 - \frac{1}{14})(1 - \frac{1}{12})(1 - \frac{1}{10})(1 - \frac{1}{8})(1 - \frac{1}{6})(1 - \frac{1}{4}) = .352394$.

The product limit estimate of $\frac{S(3)-S(5)}{1-S(9)}$ is $\frac{.841146-.715975}{1-.352394}=.1933$.

The Nelson-Aalen estimate of H(3) is $\widehat{H}(3) = \frac{1}{20} + \frac{1}{18} + \frac{1}{16} = .168056$, so the N-A esitmate of S(3) is $e^{-.168056} = .845306$.

The Nelson-Aalen estimate of H(5) is $\widehat{H}(5)=\frac{1}{20}+\frac{1}{18}+\frac{1}{16}+\frac{1}{14}+\frac{1}{12}=.322817$, so the N-A esitmate of S(3) is $e^{-.322817}=.724106$.

The Nelson-Aalen estimate of H(9) is

$$\widehat{H}(9)=\frac{1}{20}+\frac{1}{18}+\frac{1}{16}+\frac{1}{14}+\frac{1}{12}+\frac{1}{10}+\frac{1}{8}+\frac{1}{6}+\frac{1}{4}=.964484$$
 , so the N-A estimate of $S(3)$ is $\,e^{-.964484}=.381180$.

The Nelson-Aalen estimate of $\frac{S(3)-S(5)}{1-S(9)}$ is $\frac{.845306-.724106}{1-.381180}=.1959$.

The absolute difference between the two estimates is .0026.