EXAM M QUESTIONS OF THE WEEK

S. Broverman, 2005

Week of December 5

A late-night television infomercial claims that the "Extend Your Life"

rejuvenation cocktail has the following benefits for an 80-year old male:

(i) doubles the probability of surviving 10 years, and

(ii) increases expected future lifetime by 7.5 years.

A late-night actuary viewing this infomercial models survival from birth based on DeMoivres Law with different ω for before and after the rejuvenation cocktail is taken. Find the value of ω for survival after the rejuvenation cocktail is taken.

The solution can be found below.

Week of December 5 - Solution

Suppose that the DeMoivre age limit before the cocktail is taken is ω , and after the cocktail is taken it is ω' .

Before rejuvenation cocktail: ${}_{10}p_{80}=\frac{\omega-90}{\omega-80}$, $\mathring{e}_{80}=\frac{\omega-80}{2}$.

After rejuvenation cocktail: ${}_{10}p'_{80}=\frac{\omega'-90}{\omega'-80}$, $\mathring{e}'_{80}=\frac{\omega'-80}{2}$.

We are given that $\frac{\omega' - 90}{\omega' - 80} = 2 \cdot \frac{\omega - 90}{\omega - 80}$ and $\frac{\omega' - 80}{2} = \frac{\omega - 80}{2} + 7.5$.

From the final equation, we get $\omega' = \omega + 15$, and then the previous equation can be written as $\frac{\omega + 15 - 90}{\omega + 15 - 80} = 2 \cdot \frac{\omega - 90}{\omega - 80}$.

This equation can be written in the form $(\omega - 75)(\omega - 80) = 2(\omega - 90)(\omega - 65)$, which becomes the quadratic equation $\omega^2 - 155\omega + 5700 = 0$.

There are two roots, $\omega = 60$ and $\omega = 95$. We discard $\omega = 60$ as infeasible (since the model considers someone who is still alive at age 80).

Then $\omega' = 110$.