EXAM P QUESTIONS OF THE WEEK

S. Broverman, 2006

Week of February 6/06

 \boldsymbol{X} is a continuous random variable with the pdf

$$f_X(x)=cx^{-4}$$
 on the interval $\,(a,\infty)$, where $\,a>0$.

Y is a random variable defined by $Y = \frac{1}{X}$.

Find
$$E(X) \cdot E(Y)$$
.

The solution can be found below.

Week of February 6/06 - Solution

Since $Y = X^{-1}$, it follows that $X = Y^{-1} = k(Y)$.

The pdf of Y can be found from the formula

$$f_Y(y) = f_X(k(y)) \cdot |k'(y)| = c(y^{-1})^{-4} \cdot |-y^{-2}| = cy^2$$
.

Since X is defined on the interval (a, ∞) , the interval for Y is $(0, \frac{1}{a})$.

X must be a pdf, and therefore, $\int_a^\infty f_X(x)\,dx=\int_a^\infty cx^{-4}\,dx=\frac{c}{3a^3}=1$, and therefore $c=3a^3$, and $f_X(x)=3a^3x^{-4}$ on the interval (a,∞) .

The mean of X is $E(X)=\int_a^\infty x\cdot f_X(x)\,dx=\int_a^\infty x\cdot 3a^3x^{-4}\,dx=\frac{3a}{2}$.

The pdf of Y is $f_Y(y)=cy^2=3a^3y^2$ on the interval $(0,\frac{1}{a})$.

The mean of Y is $\ E(Y)=\int_0^{1/a}\!y\cdot 3a^3y^2\ dy=\frac{3}{4a}$.

Then, $E(X) \cdot E(Y) = \frac{9}{8}$.