EXAM C QUESTIONS OF THE WEEK

S. Broverman, 2006

Week of January 2/06

A ground up loss distribution if assumed to follow a Pareto distribution with $\alpha = 2$, and unknown θ . A set of 10 observations based on policy limit amount L has been used to estimate θ using moment estimation. There are 6 observations below the limit L and they total 2350. There are 4 limit observations of limit amount L. L is known to be less than 1000. The moment estimate of θ is $\hat{\theta} = 1866.3$. Using the estimated Pareto distribution, find the estimate of the probability that a ground up loss is greater than the limit amount L.

Solution can be found below.

Week of January 2/06 - Solution

We are given that $\hat{\theta} = 1866.3$.

We wish to find the probability $P(X > L) = (\frac{\theta}{L+\theta})^2$.

If we knew the value of L, then we could find this probability.

With $\alpha = 2$, the limited expected value for a Pareto distribution with limit *L* is $\theta[1 - \frac{\theta}{L+\theta}] = \frac{L\theta}{L+\theta}$.

According to the method of moments applied for limited expected value, we set the limited expected value of the Pareto distribution equal to the empirical limited expected value: $\frac{L\theta}{L+\theta} = \frac{x_1 + \dots + x_6 + 4L}{10} = \frac{2350 + 4L}{10}$. Using the value of $\hat{\theta} = 1866.3$, this equation becomes $4L^2 - 8847.8L + 4,385,805$.

Solving this quadratic equations results in two values of L: 750 and 1462. We are told that the limit is below 1000, so we choose L = 750.

The estimate of P(X > L) is $(\frac{1866.3}{750+1866.3})^2 = .51$.