EXAM P QUESTIONS OF THE WEEK

S. Broverman, 2006

Week of January 2/06

The continuous random variable X is defined on the interval (0,1). For each number a in (0,1), you are given the conditional expectation $E[X\,|\,X\leq a\,]=\frac{3a}{4}$. If 0< a< 1, find $E[X\,|\,X> a\,]$.

Hint: You may need to use the following version of Leibniz's rule:

$$\frac{d}{dz} \int_0^z h(x,z) \, dx \, = \, h(z,z) + \int_0^z \left[\frac{d}{dz} \, h(x,z) \right] dx \, \, .$$

The solution can be found below.

Week of January 2/06 - Solution

The conditional pdf of X given $X \leq a$ is $\frac{f(x)}{F(a)}$, and the conditional expectation is $E[\,X\,|\,X \leq a\,] \,=\, \int_0^a x \cdot \frac{f(x)}{F(a)}\,dx \,=\, \frac{3a}{4} \;.$ $\frac{d}{da}\,E[\,X\,|\,X \leq a\,] \,=\, \frac{3}{4} \,=\, \frac{d}{da}\,\int_0^a x \cdot \frac{f(x)}{F(a)}\,dx \,=\, \frac{af(a)}{F(a)} \,+\, \int_0^a \frac{d}{da}[x \cdot \frac{f(x)}{F(a)}]\,dx \;.$

Since
$$\frac{d}{da}[x \cdot \frac{f(x)}{F(a)}] = -\frac{xf(x)f(a)}{(F(a))^2}$$
, we get
$$\int_0^a \frac{d}{da}[x \cdot \frac{f(x)}{F(a)}] \, dx = -\int_0^a \frac{xf(x)f(a)}{(F(a))^2} \, dx = -\frac{f(a)}{F(a)} \cdot \int_0^a x \cdot \frac{f(x)}{F(a)} \, dx \\ = -\frac{f(a)}{F(a)} \cdot E[X \mid X \leq a] = -\frac{f(a)}{F(a)} \cdot \frac{3a}{4} \, .$$

Therefore, $\frac{3}{4}=\frac{af(a)}{F(a)}-\frac{f(a)}{F(a)}\cdot\frac{3a}{4}=\frac{af(a)}{4F(a)}$, so that $\frac{f(a)}{F(a)}=\frac{3}{a}$. Noting that $\frac{f(a)}{F(a)}=\frac{d}{da}\ln F(a)$, we have $\frac{d}{da}\ln F(a)=\frac{3}{a}$, and $\ln F(a)=3\ln a+c$, and $F(a)=a^3\cdot e^c$ (where c is a constant). Since X is defined on the interval (0,1), we have $F(1)=1=e^c$, so that c=0. Therefore, $F(a)=a^3$ and $f(x)=F'(x)=3x^2$.

Then
$$E[X|X>a]=\int_a^1 x\cdot rac{f(x)}{1-F(a)}\,dx=\int_a^1 x\cdot rac{3x^2}{1-a^3}\,dx=rac{3}{4}\cdot rac{1-a^4}{1-a^3}\,.$$

Alternatively, we can use the rule

$$E[X] = E[X|X \le a] \cdot P(X \le a) + E[X|X > a] \cdot P(X > a)$$

= $E[X|X \le a] \cdot F(a) + E[X|X > a] \cdot [1 - F(a)]$.

From the given conditional expectation $E[X \mid X \leq a] = \frac{3a}{4}$, we get

$$E[X] = E[X | X \le 1] = \frac{3}{4}.$$

Once we have found $F(a) = a^3$, we get

$$\frac{3}{4} = E[X] = E[X|X \le a] \cdot F(a) + E[X|X > a] \cdot [1 - F(a)]$$
$$= \frac{3a}{4} \cdot a^3 + E[X|X > a] \cdot (1 - a^3),$$

and solving for E[X|X>a] results in $\ E[X|X>a]=\frac{3}{4}\cdot\frac{1-a^4}{1-a^3}$.