EXAM M QUESTIONS OF THE WEEK

S. Broverman, 2006

Week of July 10/06

 Z_1 is the present value random variable for a continuous n-year certain and life annuity of 1 per year issued to (x).

 Z_2 is the present value random variable for a continuous whole life annuity of 1 per year issued to (x).

The force of mortality is constant at $\mu(y) = \mu > 0$ for all y, and the force of interest is $\delta > 0$.

Find each of the following in terms of μ and δ or annuity notation:

- (a) $P(Z_1 > Z_2)$
- (b) $\int_0^\infty [F_1(t) F_2(t)] dt$, where F_1 and F_2 are the distribution functions of Z_1 and Z_2 , respectively.

The solution can be found below.

Week of July 10/06 - Solution

- (a) If (x) lives beyond n years, then $Z_1=Z_2$, since both annuities will pay up to the time of (x)'s death. If (x) dies at time t< n, then $Z_1=\overline{a}_{\overline{n}|}$ and $Z_2=\overline{a}_{\overline{t}|}$, so that $Z_2>Z_2$. Therefore, $P(Z_1>Z_2)=P[(x)$ dies before time $n]=1-{}_np_x=1-e^{-\mu n}$.
- (b) Since Z_1 and Z_2 are non-negative random variables with finite means, it is true that $E[Z_1]=\int_0^\infty [1-F_1(t)]\,dt$ and $E[Z_2]=\int_0^\infty [1-F_2(t)]\,dt$. Then,

$$\begin{split} &\int_0^\infty [F_1(t) - F_2(t)] \, dt \int_0^\infty [(1 - F_2(t)) - (1 - F_1(t))] \, dt \\ &= E[Z_2] - E[Z_1] = \overline{a}_x - \overline{a}_{\overline{x:\overline{n}}|} = \overline{a}_x - (\overline{a}_x + \overline{a}_{\overline{n}|} - \overline{a}_{x:\overline{n}|}) = - \overline{a}_{\overline{n}|} + \overline{a}_{x:\overline{n}|} \; . \end{split}$$