EXAM M QUESTIONS OF THE WEEK

S. Broverman, 2005

Question 1 - Week of July 25

A select-and-ultimate life table has a select period of 10 years. The force of mortality is $\mu_{[x]}(t)=.01$ during the select period, and the force of mortality is $\mu(y)=.02$ for some at age y who is past the select period. Find an expression for the complete expectation $\mathring{e}_{[x]+t}$ for $t\geq 0$

The solution can be found below.

Question 1 - Week of July 25 - Solution

We first note that $\stackrel{\circ}{e}_y = \frac{1}{.02} = 50 \ \ \text{for} \ \ y \geq [x] + 10$.

For
$$t<10$$
, we can write $\stackrel{\circ}{e}_{[x]+t}=\stackrel{\circ}{e}_{[x]+t:\overline{10-t}|}+{}_{10-t}p_{[x]+t}\cdot e_{[x]+10}$. It was noted above that $e_{[x]+10}=50$, and ${}_{10-t}p_{[x]+t}=e^{-.01(10-t)}$. And $\stackrel{\circ}{e}_{[x]+t:\overline{10-t}|}=\int_0^{10-t}{}_sp_{[x]+t}\,ds=\int_0^{10-t}e^{-.01s}\,ds=\frac{1-e^{-.01(10-t)}}{.01}$. Then for $t<10$, $\stackrel{\circ}{e}_{[x]+t}=\frac{1-e^{-.01(10-t)}}{.01}+e^{-.01(10-t)}\cdot 50=100-50e^{-.01(10-t)}$.