EXAM C QUESTIONS OF THE WEEK

S. Broverman, 2006

Week of June 19/06

You are given the following random sample of 6 observations from the distribution of the random variable X:

Kernel smoothing is applied to estimate the density function of X. The kernel function used for the data point y is the pdf of the normal distribution with mean y and variance 1. Use kernel smoothing to estimate the distribution function of X at the point x=3, $\widehat{F}(3)$.

Solution can be found below.

Week of June 19/06 - Solution

The data points are $y_1 = 2$, $y_2 = 4$, $y_3 = 5$, $y_4 = 7$, $y_5 = 10$.

The empirical distribution is $p(2)=\frac{1}{6}$, $p(4)=\frac{1}{3}$, $p(5)=\frac{1}{6}$, $p(7)=\frac{1}{6}$, $p(10)=\frac{1}{6}$

The kernel smoothed estimate of F(3) is

$$\widehat{F}(3) = \sum_{j=1}^{k} p(y_j) \cdot K_{y_j}(3)$$

$$= \frac{1}{6} \cdot K_2(3) + \frac{1}{3} \cdot K_4(3) + \frac{1}{6} \cdot K_5(3) + \frac{1}{6} \cdot K_7(3) + \frac{1}{6} \cdot K_{10}(3) ,$$

where $K_y(x)$ is the cdf of the normal distribution with mean y and variance 1.

$$K_y(x) = \Phi(\frac{x-y}{1}) = \Phi(x-y) .$$

$$K_2(3) = \Phi(3-2) = \Phi(1) = .8413$$
,

$$K_4(3) = \Phi(3-4) = \Phi(-1) = .1587$$
,

$$K_5(3) = \Phi(3-5) = \Phi(-2) = .0228$$
,

$$K_7(3) = \Phi(3-7) = \Phi(-4) = 0$$
,

$$K_{10}(3) = \Phi(3-10) = \Phi(-7) = 0$$
.

Then,
$$\widehat{F}(3) = \frac{1}{6} \cdot K_2(3) + \frac{1}{3} \cdot K_4(3) + \frac{1}{6} \cdot K_5(3) + \frac{1}{6} \cdot K_7(3) + \frac{1}{6} \cdot K_{10}(3)$$

= $\frac{1}{6} \cdot (.8413) + \frac{1}{3} \cdot (.1587) + \frac{1}{6} \cdot (.0228) + \frac{1}{6} \cdot (0) + \frac{1}{6} \cdot (0) = .1969$.