EXAM M QUESTIONS OF THE WEEK

S. Broverman, 2006

Week of May 15/06

Two independent non-homogeneous Poisson processes are being considered. Process A has intensity function $\lambda_A(t) = \frac{1}{1+t}$ for $t \ge 0$ and Process B has intensity function $\lambda_B(t) = \frac{2}{1+t}$ for $t \ge 0$. Suppose that one event of Type 1 has occurred by time t. Let the expected time at which that event occurred be denoted A_1 . Now suppose that the two processes are combined into a single process with intensity function $\lambda_C(t) = \lambda_A(t) + \lambda_B(t)$, and suppose that one event in the combined process has occurred by time t. Let the expected time at which that event occurred be denoted C_1 . Find $A_1 - C_1$.

The solution can be found below.

Week of May 15/06 - Solution

The conditional density of $S_1^{(1)}$ (time of first Type A event) given $N_1(t) = 1$ is $\frac{\lambda_1(s)}{m_1(t)} = \frac{1/(1+s)}{ln(1+t)}$ for 0 < s < t. Then $A_1 = E[S_1^{(1)}|N_1(1) = 1] = \int_0^t s \cdot \frac{1/(1+s)}{ln(1+t)} ds = \frac{t}{ln(1+t)} - 1$.

The conditional density of S_1 (time of first combined event) given N(t) = 1 is $\frac{\lambda(s)}{m(t)} = \frac{3/(1+s)}{3ln(1+t)} = \frac{1/(1+s)}{ln(1+t)}$ for 0 < s < t. Then $C_1 = E[S_1|N_1(1) = 1] = \int_0^t s \cdot \frac{1/(1+s)}{ln(1+t)} ds = \frac{t}{ln(1+t)} - 1$. Therefore, $A_1 - C_1 = 0$.