EXAM P QUESTIONS OF THE WEEK

S. Broverman, 2006

Week of May 1/06

X has a uniform distribution on the interval (0,1).

The random variable Y is defined by $\ Y = X^{-k}$, where $\ k > 0$.

Find the mean of Y, if it is finite.

The solution can be found below.

Week of May 1/06 - Solution

$$X = Y^{-1/k} = h(Y)$$
.

According to the method by which we find the density of a transformed random variable, the pdf of Y is $g(y) = f(h(y)) \cdot |h'(y)|$, where f is the pdf of X.

Since X is uniform on (0,1), we know that f(x)=1. Therefore, $g(y)=\left|-\frac{y^{-(k+1)/k}}{k}\right|=\frac{y^{-(k+1)/k}}{k}$. Since $y=x^{-k}$, it follows that y>1, since 0< x<1.

The mean of
$$Y$$
 will be $\int_1^\infty y \cdot g(y) \, dy = \int_1^\infty y \cdot \frac{y^{-(k+1)/k}}{k} \, dy = \int_1^\infty \frac{y^{-1/k}}{k} \, dy = \int_1^\infty \frac{y^{-1/k}}{k} \, dy = \int_1^\infty \frac{y^{-1/k}}{k} \, dy$

This will be ∞ if $k \ge 1$.

If
$$k < 1$$
, then $E[Y] = -\frac{1}{k-1} = \frac{1}{1-k}$.