EXAM MLC QUESTIONS OF THE WEEK

S. Broverman, 2007

Week of January 15/07

Actuary A uses UDD in each year of age as the fractional age assumption in a life table. Actuary B uses the constant force of mortality in each year of age assumption in the same life table. Actuary A calculates $q_{x+.5}$ to be .4750, and Actuary B calculates the probability to be .5101. Find q_x .

The solution can be found below.

Week of January 15/07 - Solution

Let $q_x=a$ and $q_{x+1}=b$. Then, according to Actuary A, $_{.5}q_{x+.5}=\frac{.5a}{1-.5a}$, and $_{.5}q_{x+1}=.5b$, so that $_{.5}p_{x+.5}=(1-\frac{.5a}{1-.5a})(1-.5b)=(\frac{1-a}{1-.5a})(1-.5b)=.5250$.

According to Actuary B, $_{.5}p_{x+.5}=(p_x)^{.5}(p_{x+1}^{.5})=(1-a)^{.5}(1-b)^{.5}=.4899$, so that (1-a)(1-b)=1-a-b+ab=.2400. It follows that ab=a+b-.76.

$$(\frac{1-a}{1-.5a})(1-.5b) = .5250 \rightarrow 1-a-.5b+.5ab = .525-.2625a$$

 $\rightarrow ab = 1.475a+b-.95 = .2400$.

We then get $\ 1.475a+b-.95=a+b-.76$, so that $\ a=q_x=.4$, and $\ b=.6$.