EXAM MLC QUESTIONS OF THE WEEK

S. Broverman, 2007

Week of March 19/07

(CAS Nov 05) For a 20-year term life insurance on (x), you are given:

- *i* = 0
- A benefit of 2 is paid if death occurs by accident.
- A benefit of 1 is paid if death occurs from all other causes.
- Benefits are paid at the moment of death.
- The force of mortality for death by accident is $\mu_{x+t}^{(1)} = \frac{t}{20}$.
- The force of mortality for all other causes of death is $\mu_{x+t}^{(2)} = \frac{t}{10}$.

Calculate the net single premium for this insurance.

A) $\frac{2}{3}(1-e^{-20})$ B) $1-e^{-20}$ C) $1-e^{-30}$ D) $1-e^{-40}$ E) $\frac{4}{3}(1-e^{-30})$

The solution can be found below.

Week of March 19/07 - Solution

If i = 0, the value of an *n*-year term insurance of 1 is

 $\int_0^n v^t {}_t p_x \, \mu_{x+t} \, dt = \int_0^n {}_t p_x \, \mu_{x+t} \, dt = {}_n q_x \text{ in the continuous insurance case, and}$

it is also $_nq_x$ in the discrete term insurance case.

This problem involves a multiple decrement model, but since i = 0, insurance values will still be probabilities.

For the 20-year term insurance for accidental death, the APV is $\int_{0}^{20} 2v^{t} {}_{t} p_{x}^{(\tau)} \mu_{x+t}^{(1)} dt = 2 \cdot {}_{20} q_{x}^{(1)}$. For the 20-year term insurance for other causes of, the APV is $\int_{0}^{20} v^{t} {}_{t} p_{x}^{(\tau)} \mu_{x+t}^{(2)} dt = {}_{20} q_{x}^{(2)}$. We now note that $\mu_{x+t}^{(1)} = \frac{t}{20}$, $\mu_{x+t}^{(2)} = \frac{t}{10}$, and $\mu_{x+t}^{(\tau)} = \frac{3t}{20}$. Therefore, $\mu_{x+t}^{(1)} = \frac{1}{3} \cdot \mu_{x+t}^{(\tau)}$, and $\mu_{x+t}^{(2)} = \frac{2}{3} \cdot \mu_{x+t}^{(\tau)}$, and it follows that ${}_{n}q_{x}^{(1)} = \frac{1}{3} \cdot {}_{n}q_{x}^{(\tau)}$ and ${}_{n}q_{x}^{(2)} = \frac{2}{3} \cdot {}_{n}q_{x}^{(\tau)}$. From the combined force of decrement, we have ${}_{20}p_{x}^{(\tau)} = e^{-\int_{0}^{20} \mu_{x+t}^{(\tau)} dt} = e^{-\int_{0}^{20} .15t dt} = e^{-30}$. Therefore, ${}_{20}q_{x}^{(1)} = \frac{1}{3} \cdot (1 - e^{-30})$ and ${}_{20}q_{x}^{(2)} = \frac{2}{3} \cdot (1 - e^{-30})$. The term insurance single premium is $2[\frac{1}{3} \cdot (1 - e^{-30})] + \frac{2}{3} \cdot (1 - e^{-30}) = \frac{4}{3} \cdot (1 - e^{-30})$. Answer: E