EXAM MLC QUESTION OF THE WEEK

S. Broverman, 2008

Week of March 31/08

For a three decrement model, you are given the following absolute survival rates from the associated single decrement tables for age x: $p_x^{\prime(1)} = .8$, $p_x^{\prime(2)} = .6$, $p_x^{\prime(3)} = .4$.

(a) Assume that decrements 1 and 2 are UDD in their associated single decrement tables in each year of age, and decrement 3 is discrete. Decrement 3 occurs at time $\frac{1}{4}$ and time $\frac{3}{4}$, with one-half of the annual absolute rate occurring at time $\frac{1}{4}$ and the other half at time $\frac{3}{4}$.

Find $q_x^{(1)}$.

The solution can be found below.

Week of March 31/08 - Solution

$$p_x^{(\tau)} = (.8)(.6)(.4) = .192 \rightarrow q_x^{(\tau)} = .808.$$

$$q_x^{(1)} = \int_0^1 {}_t p_x^{(\tau)} \cdot \mu_x^{(1)}(t) dt = \int_0^1 {}_t p_x'^{(1)} \cdot {}_t p_x'^{(2)} \cdot {}_t p_x'^{(3)} \cdot \mu_x^{(1)}(t) dt$$

From UDD in single tables 1 and 2, we have

$${}_tp_x^{\prime(1)} \cdot \mu_x^{(1)}(t) = q_x^{\prime(1)} = .2 \quad \text{and} \quad {}_tp_x^{\prime(1)} = 1 - t \cdot q_x^{\prime(2)} = 1 - .4t \; .$$
 Then, $q_x^{(1)} = (.2) \times \int_0^1 (1 - .4t) \cdot {}_tp_x^{\prime(3)} \, dt \; .$

Then,
$$q_x^{(1)} = (.2) \times \int_0^1 (1 - .4t) \cdot t p_x'^{(3)} dt$$
.

From the description of
$$_tp_x'^{(3)}$$
, we have $_tp_x'^{(3)} = \begin{cases} 1 & 0 < t < .25 \\ .7 & .25 \le t < .75 \\ .4 & .75 \le t < 1 \end{cases}$

Then,
$$q_x^{(1)} = (.2) \left[\int_0^{.25} (1 - .4t) dt + \int_{.25}^{.75} (1 - .4t) (.7) dt + \int_{.75}^1 (1 - .4t) (.4) dt \right]$$

= $(.2) \left[\frac{19}{80} + \frac{7}{25} + \frac{13}{200} \right] = .1165$.