EXAM MLC QUESTIONS OF THE WEEK

S. Broverman, 2007

Week of October 29/07

A gambler is playing a game in which he either wins 1 dollar or loses 1 dollar on each play of the game. The probability of winning 1 on any play of the game is .4. If he ever reaches 0 dollars, he stops gambling and stays at 0 dollars. Suppose that he currently has 2 dollars. Find the minimum number of plays n so that the probability of reaching 0 by time n is at least .5.

The solution can be found below.

Week of October 29/07 - Solution

State → State	0	1	2	3	4	5	6	7	
\downarrow									
0	1	0	0	0	0	0	0	0	
1	.6	0	.4	0	0	0	0	0	•••
2	0	.6	0	.4	0	0	0	0	•••
3	0	0	.6	0	.4	0	0	0	•••
4	0	0	0	.6	0	.4	0	0	•••
5	0	0	0	0	.6	0	.4	0	•••
6	0	0	0	0	0	.6	0	.4	

The general one-step transition probability matrix for this transition process has the form

The process starts in state 2, so after one transition, row 2 of the two step transition matrix is the row resulting from multiplying the row vector $\begin{bmatrix} 0 & .6 & 0 & .4 & 0 & \cdots \end{bmatrix}$ by the one-step transition matrix above. This results in the row vector.

State \rightarrow	0	1	2	3	4	5	6	7	•••
State 2	.36	0	.48	0	.16	0	0	0	

These are the two step transition probabilities from initial state 2. We see that the probability of reaching 0 by time 2 is .36. We multiply this row vector by the one-step transition matrix to get the following row vector.

State \rightarrow	0	1	2	3	4	5	6	7	•••
State 2	.36	.288	0	.288	0	.064	0	0	•••

These are the three step transition probabilities from initial state 2. We see that the probability of reaching 0 by time 3 is .36. We multiply this row vector by the one-step transition matrix to get the following row vector.

State \rightarrow	0	1	2	3	4	5	6	7	•••
State 2	.5328	0	.288	0	.1536	0	.0256	0	•••

These are the four step transition probabilities from initial state 2. We see that the probability of reaching 0 by time 4 is .5328 which is greater than .5 . Time n = 4 is the first n for which the probability of reaching state 0 by time n is at least .5.