EXAM M QUESTIONS OF THE WEEK

S. Broverman, 2006

Week of October 2/06

The expense-loaded premium, G, for a fully discrete 3-year endowment insurance of 1000 issued to (x) is calculated using the equivalence principle. Expenses are paid at the beginning of each year. You are given:

(i) $1000P_{x:\overline{3} } = 323.12$	(ii) Expense reserve at the end of	the first year is -62.22
--	------------------------------------	----------------------------

(iii) $q_x = 1$	/8 (iv)	$q_{x+1} = 1/7$	(v) $i = 0.10$	
(vi) <u>Expe</u>	enses Perce	entage of Premiu	<u>im</u>	Per Policy
First	Year	30%	8	
Rene	ewal	10%	4	
Calculate G				

The solution can be found below.

Week of October 2/06 - Solution

The level expense loading is $e = G - 1000P_{x:\overline{3}|} = G - 323.12.$

We can use the accumulation relationship for expense reserve

 $(_kV^e + e - E_k)(1 + i) - SE_{k+1} \cdot q_{x+k} = p_{x+k} \cdot {}_{k+1}V^e$, where E_k is the total expense at the start of year k + 1 and SE_{k+1} is the settlement expense at the end of year k + 1. In this problem there is no settlement expense. Also, from the Equivalence Principle, we have $_0V^e = 0$. The expenses at the start of the first year are .3G + 8.

 $(0 + G - 323.12 - .3G - 8)(1.1) = (\frac{7}{8})(-62.22) \rightarrow G = 402.32$.