EXAM C QUESTIONS OF THE WEEK

S. Broverman, 2005

Question 11 - Week of October 3

The distribution of the prior parameter λ is inverse gamma with parameters α and θ , where $\alpha > 2$. The distribution of the model random variable X is exponential with mean λ . For a particular (unknown) value of λ , n observed values of X are available, $x_1, ..., x_2$.

- (a) Formulate the joint density of $x_1,...,x_n$ and λ , and state the form of the posterior distribution of λ (indicate distribution type and parameter values). Show that the Bayesian premium (predictive expectation) can be written in the form $Z\overline{X} + (1-Z) \cdot \frac{\theta}{\alpha-1}$.
- (b) Formulate the hypothetical mean, process variance, μ , a and v using the Buhlmann approach to credibility. Show that the Buhlmann credibility factor Z is the same as the factor Z in part (a) of this problem.

The solution can be found below.

Question 11 Solution

(a)
$$f(x_1,...,x_n,\lambda) = f(x_1|\lambda) \cdots f(x_n|\lambda) \cdot \pi(\lambda) = \frac{1}{\lambda^n} e^{-\sum x_i/\lambda} \cdot \frac{\theta^{\alpha} e^{-\theta/\lambda}}{\lambda^{\alpha+1}\Gamma(\alpha)}$$

 $= \frac{\theta^{\alpha}}{x^{\alpha+1}\Gamma(\alpha)} \cdot \frac{e^{-(\theta+\sum x_i)/\lambda}}{\lambda^{\alpha+n+1}}$.

From the form of the joint density, we see that the posterior distribution must be inverse gamma with parameters $\alpha' = \alpha + n$ and $\theta' = \theta + \Sigma x_i$.

The Bayesian premium is

$$\begin{split} E[X_{n+1}|x_1,...,x_n] &= \int_0^\infty E[X_{n+1}|\lambda] \cdot \pi(\lambda|x_1,...,x_n) \, d\lambda = \int_0^\infty \lambda \cdot \pi(\lambda|x_1,...,x_n) \, d\lambda \,, \\ \text{which is the mean of the posterior distribution, which is } &\frac{\theta'}{\alpha'-1} &= \frac{\theta + \Sigma x_i}{\alpha + n - 1} \,. \end{split}$$
 This can be written as
$$&\frac{\theta + \Sigma x_i}{\alpha + n - 1} &= \frac{n\overline{x}}{\alpha + n - 1} + \frac{\theta}{\alpha + n - 1} &= \frac{n}{\alpha + n - 1} \cdot \overline{x} + \left(1 - \frac{n}{\alpha + n - 1}\right) \cdot \frac{\theta}{\alpha - 1} \,, \\ \text{so that } &Z &= \frac{n}{\alpha + n - 1} \,. \end{split}$$

(b) Hypothetical mean is $\mu(\lambda)=E[X|\lambda]=\lambda$, process variance is $v(\lambda)=Var[X|\lambda]=\lambda^2$. $\mu=E[\mu(\lambda)]=E[\lambda]=\frac{\theta}{\alpha-1}$, $a=Var[\mu(\lambda)]=Var[\lambda]=E[\lambda^2]-(E[\lambda])^2=\frac{\theta^2}{(\alpha-2)(\alpha-1)}-(\frac{\theta}{\alpha-1})^2=\frac{\theta^2}{(\alpha-2)(\alpha-1)^2}$, $v=E[v(\lambda)]=E[\lambda^2]=\frac{\theta^2}{(\alpha-2)(\alpha-1)}$. Then $\frac{v}{a}=\frac{\theta^2}{(\alpha-2)(\alpha-1)}\Big/\frac{\theta^2}{(\alpha-2)(\alpha-1)^2}=\alpha-1$. $Z=\frac{n}{n+\frac{v}{a}}=\frac{n}{n+\alpha-1}$. This is the same as Z in part (a)