EXAM P QUESTION OF THE WEEK

S. Broverman, 2008

Week of April 14/08

A loss distribution has pdf $\ f(x)=\frac{1}{x^2} \ \ {\rm for} \ \ x>1$.

An insurer finds that the time in hours it takes to process a loss of amount x has a uniform distribution on the interval $(x^{1/2}, 2x^{1/2})$.

Find the expected time it takes to process a claim of random amount.

The solution can be found below.

Week of April 14/08 - Solution

We are given that the conditional distribution of process time T for a claim of size x is

$$g(t|x) = rac{1}{x^{1/2}} \; ext{ for } \; x^{1/2} < t < 2x^{1/2} \; .$$

The joint density of T and X is $f(t, x) = g(t|x) \cdot f(x) = \frac{1}{x^{1/2}} \cdot \frac{1}{x^2} = \frac{1}{x^{5/2}}$ for x > 1 and $x^{1/2} < t < 2x^{1/2}$.

The inequalities $x^{1/2} < t < 2x^{1/2}$ and x > 1 are equivalent to $\frac{t^2}{4} < x < t^2$. if t > 2 and $1 < x < t^2$ if $1 < t \le 2$.

The density of the marginal distribution of *T* is $\int_{t^2/4}^{t^2} \frac{1}{x^{5/2}} dx = \frac{14}{3t^3} \text{ for } t > 2 \quad \text{and } . \int_{1}^{t^2} \frac{1}{x^{5/2}} dx = \frac{2t^3 - 2}{3t^3} \text{ if } 1 < t \le 2 .$

The mean of T is $\int_{1}^{2} t \cdot \frac{2t^{3}-2}{3t^{3}} dt + \int_{2}^{\infty} t \cdot \frac{14}{3t^{3}} dt = 3$.

An alternative approach is to use the double expectation rule E[T] = E[E[T|X]].

From the conditional distribution of T given X we have $E[T|X] = \frac{3X^{1/2}}{2}$ (the mean of the uniform distribution on the interval $(x^{1/2}, 2x^{1/2})$. Then, $E[\frac{3X^{1/2}}{2}] = \int_1^\infty \frac{3x^{1/2}}{2} \cdot \frac{1}{x^2} dx = \int_1^\infty \frac{3}{2x^{3/2}} dx = 3$.