EXAM P QUESTIONS OF THE WEEK

S. Broverman, 2007

Week of February 5/07

A model describes the time until a loss occurs, X, and the size of the loss, Y.

$$X$$
 has pdf $f_X(x) = \frac{1}{x^2}$ for $x > 1$.

The conditional distribution of Y given $\ X = x$ has pdf $\ f_{Y|X}(y|X=x) = \frac{1}{x}$ for $\ x < y < 2x$.

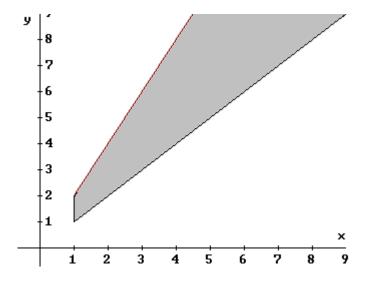
Find pdf of the marginal distribution of Y, $f_Y(y)$.

The solution can be found below.

Week of February 5/07 - Solution

Since x < y < 2x, it follows that $\frac{y}{2} < x < y$. Also, since x > 1 it follows that $x > max\{\frac{y}{2},1\}$, and y > 1. Therefore, if $1 < y \le 2$, it follows that x > 1, and if y > 2 then $x > \frac{y}{2}$.

The joint density of X and Y is $f(x,y)=f(y|x)\cdot f_X(x)=\frac{1}{x}\cdot \frac{1}{x^2}=\frac{1}{x^3}$. If 1< y<2, then this joint pdf is defined for 1< x< y, and if $y\geq 2$, then this joint pdf is defined for $\frac{y}{2}< x< y$. The shaded region below is the region of joint density.



The pdf of the marginal distribution of Y is $f_Y(y)=\int f(x,y)\,dx$. For 1< y<2, we get $f_Y(y)=\int_1^y \frac{1}{x^3}\,dx=\frac{1}{2}-\frac{1}{2y^2}$.

For $y \ge 2$, we get $f_Y(y) = \int_{y/2}^y \frac{1}{x^3} dx = \frac{4}{2y^2} - \frac{1}{2y^2} = \frac{3}{2y^2}$.