EXAM P QUESTION OF THE WEEK

S. Broverman, 2008

Week of May 5/08

The loss random variable X has an exponential distribution with a mean of 100.

When a loss occurs, an insurance policy pays the part of the loss that is above 20. If the loss is below 20, the insurance policy does not pay anything.

Y denotes the amount paid by the insurer when a loss occurs. Find Var(Y).

The solution can be found below.

Week of May 5/08 - Solution

The pdf of *X* is $f(x) = .01e^{-.01x}$.

$$Y = \left\{ \begin{array}{ll} 0 & \text{if } X \leq 20 \\ X - 20 & \text{if } X > 20 \end{array} \right..$$

$$Var(Y) = E(Y^2) - [E(Y)]^2$$
.

$$E(Y) = \int_{20}^{\infty} (x - 20) \cdot (.01)e^{-.01x} dx$$

Substituting u = x - 20 results in

$$E(Y) = \int_0^\infty \! u \cdot .01 e^{-.01(u+20)} \, du = e^{-.2} \cdot \int_0^\infty \! u \cdot .01 e^{-.01u} \, du = e^{-.2} \cdot 100 = 100 e^{-.2} \; ,$$

since $\int_0^\infty u \cdot .01e^{-.01u} du$ is the mean of an exponential random variable with mean 100.

$$E(Y^2) = \int_{20}^{\infty} (x - 20)^2 \cdot (.01)e^{-.01x} dx$$

Substituting u = x - 20 results in

$$E(Y^2) = \int_0^\infty u^2 \cdot .01e^{-.01(u+20)} du = e^{-.2} \cdot \int_0^\infty u^2 \cdot .01e^{-.01u} du = e^{-.2} \cdot 2 \cdot 100^2 = 20,000e^{-.2}$$

since $\int_0^\infty u^2 \cdot .01 e^{-.01u} du$ is the second moment of an exponential random variable with mean 100.

$$Var(Y) = 20.000e^{-.2} - (100e^{-.2})^2 = 9671$$
.