EXAM P QUESTIONS OF THE WEEK

S. Broverman, 2007

Week of September 24/07

X has a Poisson distribution with a mean of 1, so the probability function for X is

$$P(X = x) = \frac{e^{-1}}{x!}$$
 for $x = 0, 1, 2, ...$

Y is a new random variable on the non-negative integers. The probability function of Y is related to that of X as follows. A number α is given, with $0 < \alpha < 1$.

$$P(Y=0)=\alpha$$
 , $P(Y=x)=c\cdot P(X=x)$ for $x=1,2,...$

The number c is found so that Y satisfies the requirement for being a random variable

$$\sum_{x=0}^{\infty} P(Y=x) = 1.$$

Find the mean of Y in terms of α and e.

The solution can be found below.

Week of September 24/07 - Solution

Since
$$\sum_{x=0}^{\infty} P(X=x) = 1$$
 , it follows that $\sum_{x=1}^{\infty} P(X=x) = 1 - P(X=0) = 1 - e^{-1}$.

Then,
$$\sum_{x=1}^{\infty} P(Y=x) = c \cdot \sum_{x=1}^{\infty} P(X=x) = c(1-e^{-1})$$
.

But it is also true that
$$\sum_{r=1}^{\infty} P(Y=x) = 1 - P(Y=0) = 1 - \alpha.$$

Therefore,
$$\ c(1-e^{-1})=1-lpha$$
 , so that $\ c=rac{1-lpha}{1-e^{-1}}$.

The mean of Y is

$$E[Y] = \sum_{x=0}^{\infty} x \cdot P(Y = x) = \sum_{x=1}^{\infty} x \cdot P(Y = x) = \sum_{x=1}^{\infty} x \cdot c \cdot P(X = x) = c \cdot \sum_{x=0}^{\infty} x \cdot P(X = x) = c \cdot E[X] = c = \frac{1-\alpha}{1-e^{-1}}.$$