EXAM FM QUESTIONS OF THE WEEK

S. Broverman, 2006

Week of September 25/06

You are given the following bond prices for bonds with annual coupons and face and redemption amounts of \$100 each.

Coupon Rate	Term to Maturity	Price
6%	2 yrs.	97.36
6%	3 yrs.	94.97
10%	3 yrs.	105.36

Find the annual effective rates of interest for a one, two and three-year zero-coupon bonds.

The solution can be found below.

Week of September 25/06 - Solution

We will denote by s_1 , s_2 and s_3 the one, two and three-year spot rates.

Then $97.36 = \frac{6}{1+s_1} + \frac{106}{(1+s_2)^2}$, and $94.97 = \frac{6}{1+s_1} + \frac{6}{(1+s_2)^2} + \frac{106}{(1+s_3)^3}$ and $105.36 = \frac{10}{1+s_1} + \frac{10}{(1+s_2)^2} + \frac{110}{(1+s_3)^3}$. Then 10(94.97) = 6(105.36) = 317.54

Then,
$$10(94.97) - 6(105.36) = 317.54$$

= $10\left[\frac{6}{1+s_1} + \frac{6}{(1+s_2)^2} + \frac{106}{(1+s_3)^3}\right] - 6\left[\frac{10}{1+s_1} + \frac{10}{(1+s_2)^2} + \frac{110}{(1+s_3)^3}\right] = \frac{400}{(1+s_3)^3}$.

It follows that $\frac{1}{(1+s_3)^3} = \frac{317.54}{400} = .79385$, and $s_3 = (\frac{400}{317.54})^{1/3} - 1 = .080$.

Then $94.97 = \frac{6}{1+s_1} + \frac{6}{(1+s_2)^2} + 106(.79385)$, from which it follows that $\frac{6}{1+s_1} + \frac{6}{(1+s_2)^2} = 10.82$. Subtracting this from the first bond gives us $97.36 - 10.82 = 86.54 = \frac{6}{1+s_1} + \frac{106}{(1+s_2)^2} - [\frac{6}{1+s_1} + \frac{6}{(1+s_2)^2}] = \frac{100}{(1+s_2)^3}$ from which it follows that $s_2 = (\frac{100}{86.54})^{1/2} - 1 = .075$.

Using the first bond, we have $97.36 = \frac{6}{1+s_1} + \frac{106}{(1+s_2)^2} = \frac{6}{1+s_1} + \frac{106}{(1.075)^2}$, from which it follows that $5.63 = \frac{6}{1+s_1}$ and $s_1 = \frac{6}{5.63} - 1 = .066$.