EXAM FM QUESTIONS OF THE WEEK

S. Broverman, 2005

Question 10 - Week of September 26

You are given the following term structure of annual effective yield rates for zero-coupon bonds of different maturities.

Maturity (in years)	Yield
1	.06
2	i
3	.08

We wish to find the complete range of values of i that result in the following two conditions being satisfied:

(i) the one year forward, one year effective interest rate (i.e., for the 2nd year) is at least 7%, and(ii) the two year forward, one year effective interest rate (i.e., for the 3rd year) is at least 7%.

The solution can be found below.

Question 10 Solution

We denote the one year forward, one year effective rate of interest by f, and the two year forward, one year effective rate of interest by g. The relationship between f and the zero-coupon yields is $(1.06)(1 + f) = (1 + i)^2$, and the relationship between g and the zero-coupon yields is $(1 + i)^2(1 + g) = (1.08)^3$. In order to have f > .07, we must have $(1 + i)^2 > (1.06)(1.07)$, so that i > .065. In order to have g > .07, we must have $\frac{1}{1+g} < \frac{1}{1.07}$, so that $(1 + i)^2 = \frac{(1.08)^3}{1+g} = 1.1773$, and i < .085. Therefore, the range for i is .065 < i < .085. Note also that since $(1.06)(1 + f)(1 + g) = (1.08)^3$, in order for f > .07, we must have $1 + g = \frac{(1.08)^3}{(1.06)(1+f)} < 1.1107$, and similarly for f.